148-HYDROXY STEROIDS - VI. 1) SYNTHESIS OF DIGITOXIGENIN

Tsenka Milkova, Hermann Stein, Aranka Ponty, Dirk Böttger, and Peter Welzel*

Abteilung für Chemie der Ruhruniversität Postfach 102148, D-4630 Bochum

<u>Abstract:</u> A short and efficient synthesis of digitoxigenin ($\underline{10}$) is reported using a new method for the introduction of the 14ß-OH group.

Until now for the introduction of a 14ß-OH group into the steroid nucleus there existed only one general method (independent of the substitution at C-17): Hydration of a $\overline{\Delta}^{14}$ double bond by HOBr addition followed by hydrogenolysis of the carbon-halogen bond (Bernstein-Engel method). 2)

Recently, we reported on an easy access to $12,14\beta$ -diols. ³⁾ We wish now to disclose a general and efficient method for the formation of 14β -hydroxy steroids lacking substitution at C-12.

When lumihecogenin acetate ($\underline{1}$), which is prepared from hecogenin acetate in 80% yield, $\underline{4}$) was reduced with sodium borohydride (in ethanol, 30 min at 25°C) primary alcohol $\underline{2}$ was obtained in 99% yield. $\underline{2}$ was mesylated (0.5 mmol in 3 ml of CH₂Cl₂ with 100 μ l of triethylamine and 50 μ l of mesylchloride, 75 min at - 70°C) to furnish after chromatographic separation $\underline{3}$ (70%). Solvolysis of $\underline{3}$ under the conditions reported by Masamune $\underline{5}$) gave 66% yield of the known 14ß-hydroxy tigogenin acetate ($\underline{4}$). Using methanol instead of water as nucleophile we were able to isolate 14ß-methoxy compound $\underline{5}$.

Similarly, photolytic rearrangement of 12-oxo-cardenolide $\underline{6}^{}$ yielded secoaldehyde $\underline{7}$, which on reduction with sodium borohydride (2 equivalents in ethanol, 10 min at 0° C) furnished $\underline{8}$ in 43% yield (based on $\underline{6}$). Mesylation of $\underline{8}$ to $\underline{9}$ as described above followed by solvolysis (0.2 m oxalic acid in acetone/water 1:2, 1h at 50° C) gave 52% yield (based on $\underline{8}$) of digitoxigenin acetate ($\underline{10}$), identical with an authentic sample .

 $\underline{6}$ can be prepared from deoxycholic acid in few steps. ⁶⁾ The reactions reported in this communication represent, therefore, a short and efficient synthesis of medicinally important digitoxigenin from readily available deoxycholic acid .

<u>Acknowledgement:</u> Our work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie .

References:

- Part V: P.Welzel, R.Moschner, A.Ponty, U.Pommerenk, and H.Sengewein, Liebigs Ann. Chem., in the press.
- 2) M.Heller, F.J.McEvoy, and S.Bernstein, Steroids, $\underline{3}$, 193 (1964); Ch.R.Engel, and G.Bach, ibid., $\underline{3}$, 593 (1964).
- 3) P.Welzel, B.Janssen, and H.Duddeck, Liebigs Ann. Chem., 546 (1981).
- 4) P.Bladon, W.McMeekin, and J.A.Williams, J. Chem. Soc., 5727 (1963).
- 5) A.Murai, S.Sato, and T.Masamune, Tetrahedron Letters, 22, 1033 (1981).
- 6) P.Welzel, and H.Stein, Tetrahedron Letters, 22, 3385 (1981).

(Received in Germany 16 November 1981)